Recursos


Esta documentación y materiales de aprendizaje corresponden a IAT/ML versión 1.2.0.

Documentación


IAT/ML White Paper
17 diciembre 2024
Este documento proporciona una breve introducción a IAT/ML, que puede resultar útil para evaluar su adopción.
IAT/ML Analysis Process Guidelines
17 diciembre 2024
Este documento proporciona una descripción exhaustiva del proceso a seguir para utilizar IAT/ML.
Notas de versión IAT/ML
17 diciembre 2024
Este documento proporciona una descripción de las versiones previas, actual y planeadas de IAT/ML.

IAT/ML Ontology Patterns Guidelines
17 diciembre 2024
Este documento proporciona un catálogo de patrones ontológicos comunes, así como recomendaciones sobre cómo tratar cada uno cuando se usa IAT/ML.
IAT/ML Argumentation Patterns Guidelines
17 diciembre 2024
Este documento proporciona un catálogo de patrones argumentales comunes, así como recomendaciones sobre cómo tratar cada uno cuando se usa IAT/ML.
IAT/ML Agency Patterns Guidelines
17 diciembre 2024
Este documento proporciona un catálogo de patrones agenciales comunes, así como recomendaciones sobre cómo tratar cada uno cuando se usa IAT/ML.

IAT/ML Theoretical Foundations
17 diciembre 2024
Este documento ofrece una descripción de las mini-teorías y fundamentos teóricos de IAT/ML.
IAT/ML Technical Specification
17 diciembre 2024
Este documento proporciona una descripción detallada de IAT/ML que puede ser utilizada como referencia.
IAT/ML Standard Question Set
17 diciembre 2024
Este archivo de conjunto de preguntas contiene un catálogo de preguntas para el análisis agencial, que puedes abrir usando LogosLink.


Materiales de aprendizaje


IAT/ML Basic Graphical Notation Summary
17 diciembre 2024
Este documento proporciona una referencia rápida y breve de la notación de IAT/ML.


Artículos de investigación


IAT/ML: A Metamodel and Modelling Approach for Discourse Analysis
Cesar Gonzalez-Perez, Martín Pereira-Fariña, Beatriz Calderón-Cerrato y Patricia Martín-Rodilla, 2024
Language technologies are gaining momentum as textual information saturates social networks and media outlets, compounded by the growing role of fake news and disinformation. In this context, approaches to represent and analyse public speeches, news releases, social media posts and other types of discourses are becoming crucial. Although there is a large body of literature on text-based machine learning, it tends to focus on lexical and syntactical issues rather than semantic or pragmatic. Being useful, these advances cannot tackle the nuanced and highly context-dependent problems of discourse evaluation that society demands. In this paper, we present IAT/ML, a metamodel and modelling approach to represent and analyse discourses. IAT/ML focuses on semantic and pragmatic issues, thus tackling a little researched area in language technologies. It does so by combining three different modelling approaches: ontological, which focuses on what the discourse is about; argumentation, which deals with how the text justifies what it says; and agency, which provides insights into the speakers’ beliefs, desires and intentions. Together, these three modelling approaches make IAT/ML a comprehensive solution to represent and analyse complex discourses towards their understanding, evaluation and fact checking.

Connecting Discourse and Domain Models in Discourse Analysis through Ontological Proxies
Cesar Gonzalez-Perez, 2020
Argumentation-oriented discourse analysis usually focuses on what is being said and how, following the text under analysis quite literally, and paying little attention to the things in the world to which the text refers. However, to perform argumentation-oriented discourse analysis, one must assume certain conceptualisations by the speaker in order to interpret and reconstruct propositions and argumentation structures. These conceptualisations are rarely captured as a product of the analysis process. In this paper, we argue that considering the ontology to which a discourse refers as well as the text itself provides a richer and more useful representation of the discourse and its argumentation structures, facilitates intertextual analysis, and improves understandability of the analysis products. To this end, we propose the notion of ontological proxies, i.e., conceptual artefacts that connect elements in the argumentation structure to the associated ontology elements.